
Universal Optimality of Dijkstra via
Beyond-Worst-Case Heaps

Bernhard Haeupler1,2, Richard Hladík1,2, Václav Rozhoň2, Robert Tarjan3, Jakub Tětek2

1 ETH Zürich
2 INSAIT, Sofia University “St. Kliment Ohridski”

3 Princeton University

FOCS 2024

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 1 / 23

Universal Optimality of Dijkstra via
Beyond-Worst-Case Heaps

Bernhard Haeupler1,2, Richard Hladík1,2, Václav Rozhoň2, Robert Tarjan3, Jakub Tětek2

1 ETH Zürich
2 INSAIT, Sofia University “St. Kliment Ohridski”

3 Princeton University

FOCS 2024

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 1 / 23

Intro

Intro

This talk: something new about
Dijkstra’s algorithm

Our result: Dijkstra + a nice heap is optimal on every graph

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 2 / 23

Intro

Intro

This talk: something new about
Dijkstra’s algorithm

Our result: Dijkstra + a nice heap is optimal on every graph
Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 2 / 23

Intro

Outline

▶ Setup
▶ Universal Optimality
▶ Nice Heaps
▶ Dijkstra + Nice Heaps
▶ Proof Intuition

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 3 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s

▶ Task (usually): compute distances from s
▶ but: fast algorithms exist: O(m

√
log n · log log n) for undirected [Dua+23], many

others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s
▶ Model: positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s
▶ Task: ???

Task (usually): compute distances from s
▶ but: fast algorithms exist: O(m

√
log n · log log n) for undirected [Dua+23], many

others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s
▶ Model: positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s
▶ Task (usually): compute distances from s

▶ but: fast algorithms exist: O(m
√

log n · log log n) for undirected [Dua+23], many
others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s
▶ Model: positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s
▶ Task (usually): compute distances from s

▶ but: fast algorithms exist: O(m
√

log n · log log n) for undirected [Dua+23], many
others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s
▶ Model: positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s
▶ Task (usually): compute distances from s

▶ but: fast algorithms exist: O(m
√

log n · log log n) for undirected [Dua+23], many
others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s

▶ Model: positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s
▶ Task (usually): compute distances from s

▶ but: fast algorithms exist: O(m
√

log n · log log n) for undirected [Dua+23], many
others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s
▶ Model: ???

positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Single-Source Shortest Paths (SSSP)

▶ Input: (un)directed G , edge weights w , source node s
▶ Task (usually): compute distances from s

▶ but: fast algorithms exist: O(m
√

log n · log log n) for undirected [Dua+23], many
others for integer/bounded-ratio weights [FW93; FW94; Ram96; Ram97; Tho99;
Hag00; Tho00a; Tho00b; Tho04]

▶ Task (this talk): order vertices by distance from s
▶ Model: positive real weights, only comparisons and additions

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 4 / 23

Setup

Lower Bound

needs log(n!) = Ω(n log n) comparisons

needs log(1) = 0 comparisons

=⇒ Some graphs are harder than others.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 5 / 23

Setup

Lower Bound

needs log(n!) = Ω(n log n) comparisons needs log(1) = 0 comparisons

=⇒ Some graphs are harder than others.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 5 / 23

Setup

Lower Bound

needs log(n!) = Ω(n log n) comparisons needs log(1) = 0 comparisons

=⇒ Some graphs are harder than others.
Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 5 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]

▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c ∀G ∀ correct A′

maxw TimeA(G , w) ≤

c·

maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]
▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c ∀G ∀ correct A′

maxw TimeA(G , w) ≤

c·

maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]
▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c ∀G ∀ correct A′

maxw TimeA(G , w) ≤

c·

maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]
▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c ∀G ∀ correct A′

maxw TimeA(G , w)

≤

c·

maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]
▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c ∀G

∀ correct A′ maxw TimeA(G , w) ≤

c·

maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]
▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c

∀G ∀ correct A′ maxw TimeA(G , w) ≤

c·

maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Universal Optimality

Universal Optimality

▶ notion from distributed computing [GKP98; HWZ21]
▶ there, we have universally optimal algorithms for many problems (minimum spanning

trees, minimum cut, approximate shortest paths) [HWZ21; GZ22; Roz+22; Zuz+22]
▶ on every underlying unweighted graph G , A is worst-case optimal w.r.t. w

A is universally optimal if:

∃c ∀G ∀ correct A′ maxw TimeA(G , w) ≤ c· maxw TimeA′(G , w)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 6 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . insert a new item
▶ DeleteMin . . . delete and return the minimum
▶ Decrease . . . decrease item’s value

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.

▶ Insert . . . insert a new item
▶ DeleteMin . . . delete and return the minimum
▶ Decrease . . . decrease item’s value

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . insert a new item

▶ DeleteMin . . . delete and return the minimum
▶ Decrease . . . decrease item’s value

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . insert a new item
▶ DeleteMin . . . delete and return the minimum

▶ Decrease . . . decrease item’s value

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . insert a new item
▶ DeleteMin . . . delete and return the minimum
▶ Decrease . . . decrease item’s value

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . O(1)
▶ DeleteMin . . . O(log n)
▶ Decrease . . . O(1)

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . O(1)
▶ DeleteMin . . . O(log n) & Ω(log n) (implied by the sorting lower bound)
▶ Decrease . . . O(1)

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . O(1)
▶ DeleteMin . . . O(log n) & Ω(log n) (implied by the sorting lower bound)
▶ Decrease . . . O(1)

Idea: Can we sidestep the lower bound when the operations have structure?

▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;
Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . O(1)
▶ DeleteMin . . . O(log n) & Ω(log n) (implied by the sorting lower bound)
▶ Decrease . . . O(1)

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]

▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . O(1)
▶ DeleteMin . . . O(log n) & Ω(log n) (implied by the sorting lower bound)
▶ Decrease . . . O(1)

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]

▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Nice Heaps

A heap is a data structure for storing a collection of items.
▶ Insert . . . O(1)
▶ DeleteMin . . . O(log n) & Ω(log n) (implied by the sorting lower bound)
▶ Decrease . . . O(1)

Idea: Can we sidestep the lower bound when the operations have structure?
▶ Long line of research for heaps & other data structures [ST85; Fre+86; Iac00;

Pet05; Elm06; Dem+07; EFI12; BHM13; EFI13; IÖ14; KS18; ST23]
▶ Splay trees: dynamic optimality conjecture [ST85; Iac13]
▶ No analogous conjecture for heaps

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 7 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality

▶ Working-set bound: the cost of DeleteMin is O(log t)
where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Nice Heaps

Working-Set Bound
▶ Idea: be faster when there’s temporal locality
▶ Working-set bound: the cost of DeleteMin is O(log t)

where t = #operations since the item was inserted

Ins(999), Ins(999), . . . , Ins(999)︸ ︷︷ ︸
k−1

, Ins(1), Del, Ins(1), Del, Ins(1), Del, . . .

regular heap:
Θ(log(heap size)) = Θ(log k)

working-set heap:
O(log(item age)) = O(1)

▶ side result: we construct a working-set heap with O(1) Decrease

Our result: Dijkstra with any working-set heap is universally optimal.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 8 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins

︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)

▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

▶ Time complexity (with a fast heap): O(n + m + cost of all DeleteMins︸ ︷︷ ︸
goal: make this small

)

s

▶ working-set heap: O(log(time since insertion)) = O(1)
▶ Fibonacci heap: O(log(heap size)) = O(1)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 9 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total
▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n)

=⇒ Θ(n log n) total

▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n) =⇒ Θ(n log n) total
▶ working-set heap: O(log(time since insertion)) = O(1)

=⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Dijkstra

Dijkstra + Nice Heaps

s√
n

▶ Fibonacci heap: Θ(log(heap size)) = Θ(log
√

n) = Θ(log n) =⇒ Θ(n log n) total
▶ working-set heap: O(log(time since insertion)) = O(1) =⇒ O(n) total

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 10 / 23

Proof Intuition

Proof Intuition

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Let Dijkstra run.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Let Dijkstra run.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Let Dijkstra run.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Let Dijkstra run.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Let Dijkstra run.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Let Dijkstra run.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Pause Dijkstra at any time. B := |exploration boundary|.
▶ Claim: All B! possible orderings of the exploration boundary are possible.

(=⇒ the algorithm needs to do Ω(B log B) comparisons)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Claim: All B! possible orderings of the exploration boundary are possible.
▶ Proof: by picture.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Claim: All B! possible orderings of the exploration boundary are possible.
▶ Proof: by picture.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Claim: All B! possible orderings of the exploration boundary are possible.
▶ Proof: by picture.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

▶ Claim: All B! possible orderings of the exploration boundary are possible.
▶ Proof: by picture.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Proof Intuition

Proof Intuition

s

How to finish the proof:
1. Charge some DeleteMins to this exploration boundary.
2. Continue recursively on left and right parts.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 11 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.

▶ There are islands where universal(-like) optimality works nicely:
distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing

, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures

, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24]

, sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21]

, bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?

▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Conclusion

Dijkstra +
working-set bound︷ ︸︸ ︷

nice heap is
universal optimality︷ ︸︸ ︷

optimal on every graph.
▶ There are islands where universal(-like) optimality works nicely:

distributed computing, data structures, sorting-based algorithms [DLM00; ABC17;
Hae+24; HRR24], sequential estimation [VV16; VV17; HLY21], bandit problems
[LR85; CL16; CLQ17; Kir+21; Li+22]

▶ Can we connect some of them?
▶ Can we find more?

Thank you!

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 12 / 23

Conclusion

Bibliography I

[LR85] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”. In: Advances in applied mathematics
6.1 (1985), pp. 4–22.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. “Self-adjusting binary search trees”. In: Journal of the ACM (JACM) 32.3
(1985), pp. 652–686.

[Fre+86] Michael L Fredman et al. “The pairing heap: A new form of self-adjusting heap”. In: Algorithmica 1.1-4 (1986), pp. 111–129.

[FW93] Michael L. Fredman and Dan E. Willard. “Surpassing the information theoretic bound with fusion trees”. In: Journal of
Computer and System Sciences 47.3 (1993), pp. 424–436. issn: 0022-0000. doi:
https://doi.org/10.1016/0022-0000(93)90040-4. url:
https://www.sciencedirect.com/science/article/pii/0022000093900404.

[FW94] Michael L. Fredman and Dan E. Willard. “Trans-dichotomous algorithms for minimum spanning trees and shortest paths”. In:
Journal of Computer and System Sciences 48.3 (1994), pp. 533–551. issn: 0022-0000. doi:
https://doi.org/10.1016/S0022-0000(05)80064-9. url:
https://www.sciencedirect.com/science/article/pii/S0022000005800649.

[Ram96] Rajeev Raman. “Priority Queues: Small, Monotone and Trans-Dichotomous”. In: Proceedings of the Fourth Annual European
Symposium on Algorithms. ESA ’96. Berlin, Heidelberg: Springer-Verlag, 1996, pp. 121–137. isbn: 3540616802.

[Ram97] Rajeev Raman. “Recent Results on the Single-Source Shortest Paths Problem”. In: SIGACT News 28.2 (June 1997), pp. 81–87.
issn: 0163-5700. doi: 10.1145/261342.261352. url: https://doi.org/10.1145/261342.261352.

[GKP98] Juan A Garay, Shay Kutten, and David Peleg. “A sublinear time distributed algorithm for minimum-weight spanning trees”. In:
SIAM Journal on Computing 27.1 (1998), pp. 302–316.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 13 / 23

https://doi.org/https://doi.org/10.1016/0022-0000(93)90040-4
https://www.sciencedirect.com/science/article/pii/0022000093900404
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80064-9
https://www.sciencedirect.com/science/article/pii/S0022000005800649
https://doi.org/10.1145/261342.261352
https://doi.org/10.1145/261342.261352

Conclusion

Bibliography II

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time”. In: J. ACM 46.3 (May
1999), pp. 362–394. issn: 0004-5411. doi: 10.1145/316542.316548. url: https://doi.org/10.1145/316542.316548.

[DLM00] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. “Adaptive set intersections, unions, and differences”. In: Proceedings
of the eleventh annual ACM-SIAM symposium on Discrete algorithms. 2000, pp. 743–752.

[Hag00] Torben Hagerup. “Improved Shortest Paths on the Word RAM”. In: Automata, Languages and Programming. Ed. by
Ugo Montanari, José D. P. Rolim, and Emo Welzl. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 61–72. isbn:
978-3-540-45022-1.

[Iac00] John Iacono. “Improved upper bounds for pairing heaps”. In: Scandinavian Workshop on Algorithm Theory. Springer. 2000,
pp. 32–45.

[Tho00a] Mikkel Thorup. “Floats, Integers, and Single Source Shortest Paths”. In: J. Algorithms 35.2 (May 2000), pp. 189–201. issn:
0196-6774. doi: 10.1006/jagm.2000.1080. url: https://doi.org/10.1006/jagm.2000.1080.

[Tho00b] Mikkel Thorup. “On RAM Priority Queues”. In: SIAM Journal on Computing 30.1 (2000), pp. 86–109. doi:
10.1137/S0097539795288246. url: https://doi.org/10.1137/S0097539795288246.

[Tho04] Mikkel Thorup. “Integer priority queues with decrease key in constant time and the single source shortest paths problem”. In:
Journal of Computer and System Sciences 69.3 (2004). Special Issue on STOC 2003, pp. 330–353. issn: 0022-0000. doi:
https://doi.org/10.1016/j.jcss.2004.04.003. url:
https://www.sciencedirect.com/science/article/pii/S002200000400042X.

[Pet05] Seth Pettie. “Towards a final analysis of pairing heaps”. In: 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05). IEEE. 2005, pp. 174–183.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 14 / 23

https://doi.org/10.1145/316542.316548
https://doi.org/10.1145/316542.316548
https://doi.org/10.1006/jagm.2000.1080
https://doi.org/10.1006/jagm.2000.1080
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1137/S0097539795288246
https://doi.org/https://doi.org/10.1016/j.jcss.2004.04.003
https://www.sciencedirect.com/science/article/pii/S002200000400042X

Conclusion

Bibliography III

[Elm06] Amr Elmasry. “A priority queue with the working-set property”. In: International Journal of Foundations of Computer Science
17.06 (2006), pp. 1455–1465.

[Dem+07] Erik D Demaine et al. “Dynamic optimality—almost”. In: SIAM Journal on Computing 37.1 (2007), pp. 240–251.

[EFI12] Amr Elmasry, Arash Farzan, and John Iacono. “A priority queue with the time-finger property”. In: Journal of Discrete
Algorithms 16 (2012), pp. 206–212.

[BHM13] Prosenjit Bose, John Howat, and Pat Morin. “A history of distribution-sensitive data structures”. In: Space-Efficient Data
Structures, Streams, and Algorithms: Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday (2013),
pp. 133–149.

[EFI13] Amr Elmasry, Arash Farzan, and John Iacono. “On the hierarchy of distribution-sensitive properties for data structures”. In:
Acta informatica 50.4 (2013), pp. 289–295.

[Iac13] John Iacono. “In pursuit of the dynamic optimality conjecture”. In: Space-Efficient Data Structures, Streams, and Algorithms:
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday. Springer, 2013, pp. 236–250.

[IÖ14] John Iacono and Özgür Özkan. “A tight lower bound for decrease-key in the pure heap model”. In: arXiv preprint
arXiv:1407.6665 (2014).

[CL16] Lijie Chen and Jian Li. “Open problem: Best arm identification: Almost instance-wise optimality and the gap entropy
conjecture”. In: Conference on Learning Theory. PMLR. 2016, pp. 1643–1646.

[VV16] Gregory Valiant and Paul Valiant. “Instance optimal learning of discrete distributions”. In: Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing. 2016, pp. 142–155.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 15 / 23

Conclusion

Bibliography IV

[ABC17] Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. “Instance-Optimal Geometric Algorithms”. In: J. ACM 64.1 (Mar.
2017). issn: 0004-5411. doi: 10.1145/3046673. url: https://doi.org/10.1145/3046673.

[CLQ17] Lijie Chen, Jian Li, and Mingda Qiao. “Towards instance optimal bounds for best arm identification”. In: Conference on
Learning Theory. PMLR. 2017, pp. 535–592.

[VV17] Gregory Valiant and Paul Valiant. “An automatic inequality prover and instance optimal identity testing”. In: SIAM Journal on
Computing 46.1 (2017), pp. 429–455.

[KS18] László Kozma and Thatchaphol Saranurak. “Smooth heaps and a dual view of self-adjusting data structures”. In: Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing. 2018, pp. 801–814.

[HWZ21] Bernhard Haeupler, David Wajc, and Goran Zuzic. “Universally-optimal distributed algorithms for known topologies”. In:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021, pp. 1166–1179.

[HLY21] Ziyue Huang, Yuting Liang, and Ke Yi. “Instance-optimal mean estimation under differential privacy”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 25993–26004.

[Kir+21] Johannes Kirschner et al. “Asymptotically optimal information-directed sampling”. In: Conference on Learning Theory. PMLR.
2021, pp. 2777–2821.

[GZ22] Mohsen Ghaffari and Goran Zuzic. “Universally-optimal distributed exact min-cut”. In: Proceedings of the 2022 ACM
Symposium on Principles of Distributed Computing. 2022, pp. 281–291.

[Li+22] Zhaoqi Li et al. “Instance-optimal pac algorithms for contextual bandits”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 37590–37603.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 16 / 23

https://doi.org/10.1145/3046673
https://doi.org/10.1145/3046673

Conclusion

Bibliography V

[Roz+22] Václav Rozhoň et al. “Undirected (1+eps)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and
Distributed Algorithms”. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. STOC 2022.
Rome, Italy: Association for Computing Machinery, 2022, pp. 478–487. isbn: 9781450392648. doi: 10.1145/3519935.3520074.
url: https://doi.org/10.1145/3519935.3520074.

[Zuz+22] Goran Zuzic et al. “Universally-Optimal Distributed Shortest Paths and Transshipment via Graph-Based L1-Oblivious Routing”.
In: Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2022.

[Dua+23] Ran Duan et al. “A Randomized Algorithm for Single-Source Shortest Path on Undirected Real-Weighted Graphs”. In: arXiv
preprint arXiv:2307.04139 (2023).

[ST23] Corwin Sinnamon and Robert E Tarjan. “Efficiency of Self-Adjusting Heaps”. In: arXiv preprint arXiv:2307.02772 (2023).

[Hae+24] Bernhard Haeupler et al. Fast and Simple Sorting Using Partial Information. 2024. arXiv: 2404.04552 [cs.DS].

[HRR24] Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann. Simpler Optimal Sorting from a Directed Acyclic Graph. 2024.
arXiv: 2407.21591 [cs.DS].

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 17 / 23

https://doi.org/10.1145/3519935.3520074
https://doi.org/10.1145/3519935.3520074
https://arxiv.org/abs/2404.04552
https://arxiv.org/abs/2407.21591

Conclusion

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 18 / 23

Conclusion

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 19 / 23

Backup Slides

Backup Slides

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 20 / 23

Backup Slides

Our heap

▶ |Hr | ≤ 2r

▶ guarantee: if x ∈ Hr , then |Wx | = Ω(2r)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 21 / 23

Backup Slides

Our heap

H0H1
H2

Older items
here

Newer items
here

H3︸ ︷︷ ︸
log n

▶ |Hr | ≤ 2r

▶ guarantee: if x ∈ Hr , then |Wx | = Ω(2r)

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 21 / 23

Backup Slides

Our heap

H0H1
H2

Older items
here

Newer items
here

H3︸ ︷︷ ︸
log n

▶ |Hr | ≤ 2r

▶ guarantee: if x ∈ Hr , then |Wx | = Ω(2r)
Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 21 / 23

Backup Slides

Two definitions of a working set

Definition 1: A heap has the weak working-set property if DeleteMin that deletes item x has
amortized cost O(log tx) where tx is the number of operations elapsed between inserting and
deleting x .

Definition 2: A heap has the medium working-set property if DeleteMin that deletes item x
has amortized cost O(log |Wx |) where Wx is the maximum-cardinality set of items such that:
▶ all items in Wx were inserted (non-strictly) after x ,
▶ there was a moment in time where all items in Wx were simultaneously in the heap.

Claim: Definitions 1 and 2 are equivalent.

Richard Hladík Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps FOCS 2024 22 / 23

	Intro
	Setup
	Universal Optimality
	Nice Heaps
	Dijkstra
	Proof Intuition
	Conclusion
	References
	Backup Slides

